
X.ORG DEVELOPER CONFERENCE 2014

Security in Wayland-Based DEs
Privileged Clients, LibWSM and Security UIs

Steve Dodier-Lazaro
s.dodier-lazaro@cs.ucl.ac.uk

Martin Peres
martin.peres@labri.fr



Outline

1 Current Security of the Graphic Stack

2 Introducing Wayland Security Modules

3 Facts and myths about humans and security

4 Security UIs, Infrastructure and Pitfalls to Avoid

5 Conclusion

2 / 47



DRM: Update since our talk @ XDC2012

Drivers: Per-process virtual address space

• Intel: WIP; Nouveau & Radeon: done

X-Server

• DRI3: Use DMA-Buf instead of GEM flink for BO-passing
• but the X protocol is still unsecure by design...

Wayland/Weston

• Designed with security in mind from the ground up
• now uses DMA-Buf instead of GEM-flink to provide client isolation
• relies on DRM drivers for its security

3 / 47



But How to Build a Secure OS?

Some critical concepts

Complete Mediation Requires client isolation in the HW, kernel, the
display server and sandboxing

Least Privilege Need for mandatory security within user sessions
and means to identify privileged clients

Trusted Path Unspoofable ways for user and trusted apps to
communicate; Allows reading the user’s intent

All of the above needed to prevent evil apps from hurting you!
[Saltzer and Schroeder, 1975, Loscocco et al., 1998]

4 / 47



Challenges of creating a secure Desktop 1/2

Some common GUI requirements are un-secure by design

• Clipboard monitoring
• Acceptable: check that data can be pasted (for GUI toolkits)
• Unacceptable: access sensitive data

• Key events monitoring
• Acceptable: global hotkeys
• Unacceptable: keylogging, reading your passwords

• Input-injection
• Acceptable: visual keyboards / accessibility
• Unacceptable: command injection

5 / 47



Challenges of creating a secure Desktop 2/2

• Focus raising
• Acceptable: show apps requiring user input before a power down
• Unacceptable: window stealing the user’s input while authenticating

• Full-screen support
• Acceptable: video, gaming, full-screen shell
• Unacceptable: spoofing the greeter

Solutions by the X-Server vs Wayland/Weston

• X-Server: One valid use case→ access granted to everyone
• Wayland: One invalid use case→ access denied to everyone

6 / 47



Current solution on Wayland/Weston

Wayland’s privileged interfaces:

• Not defined yet, many discussions
• partially due to the security implications
• the compositor sometimes need the user intent (Trusted Path)
• users or packagers may want to work around that!

Example: Wayland/Clipboard

Reading the clipboard doesn’t seem to be defined. Drag & Drop is
however supported because the compositor gets the user’s intent!

7 / 47



Example of policies for accessing a privileged iface

Comp. A

App. A X-DE
App

App. B X-DE
App

App. C

Comp. B Comp. C

Allow
everything

Deny
everything

Allow hard-
coded Apps

8 / 47



Challenges of defining policies

Challenges of defining policies

• Many Desktop Environments (Gnome, KDE, Tizen, XFCE, etc...)
• DEs won’t agree on a single policy
• Cross-DE apps cannot ship with a policy for every DE
• Packagers need a simple policy interface

Possible solution?

• Abstract the decision process in a multi-backend library
• Create a generic policy and per-DE tweaks

9 / 47



Outline

1 Current Security of the Graphic Stack

2 Introducing Wayland Security Modules

3 Facts and myths about humans and security

4 Security UIs, Infrastructure and Pitfalls to Avoid

5 Conclusion

10 / 47



Wayland Security Modules

Goals

• Provide security decisions for Wayland privileged ifaces
• Help DEs store policy for their ifaces in a centralised way
• Support innovation and standardisation over time

How we do that

• Hooks on all privileged ifaces in the Wayland API
• Support for any backend/module: just a few symbols to export
• Simple: currently about 1100 LOCs w/ default backend
• Very extensible!

11 / 47



Example of policies for accessing a privileged iface

Comp. A

App. A X-DE
App

App. B X-DE
App

App. C

Comp. B Comp. C

Allow
everything

LibWSM

get_p get_p

Default SELinux Polkit

12 / 47



How to Use

Modifications to a compositor

1 wsm_init() on compositor start
2 wsm_new_client() on new client
3 Users choose a backend and write a policy – or use ours!
4 When implementing privileged ifaces, call wsm_get_permission()

5 Got custom semantics? Call wsm_get_custom_permission()

6 wsm_client_free() and wsm_fini() to clean up

Source
https://github.com/mupuf/libwsm

13 / 47

https://github.com/mupuf/libwsm


LibWSM Security Decisions 1/2

Four default semantics

Allow Client explicitly allowed use of a privileged iface.
Soft Allow Client allowed, but there could be issues. We

recommend notifying the user.
Soft Deny Client denied, but no particular concern. You could

grant access via trusted UIs or prompts.
Deny Client explicitly denied by policy, don’t proceed.

If LibWSM answers something else, implement Deny.
If there is no policy, the default backend will reply Soft Deny.

14 / 47



LibWSM Security Decisions 2/2

Why the distinction?

Hard decisions represent the actual security policy. Please respect it.
Soft decisions are assumptions about what’s best. Compositors can

probably do better than just allow/deny.

Security notifications, Trusted UIs, User-driven access control and
Permission prompts should come to mind with soft replies.

15 / 47



Extending LibWSM is Easy!

Support for custom capabilities...

Compositors should be let to innovate securely: custom ifaces like
_WESTON_FULLSCREEN can be mediated.

Custom decision semantics...
If you implement specific behaviours, you can express them in the
policy e.g., “allow if no sensitive apps open” for WSM_SCREENSHARING.

Different policies per compositor...

Write per-DE policies just like in menu or autostart files, e.g.:

[GNOME]
WSM_RAISE_FOCUS=deny

16 / 47



LibWSM Capabilities 1/3

WSM_SCREENSHOT

Take a screenshot of the whole screen (Soft Deny)

WSM_SCREENSHARING

Record the screen continuously (Soft Deny)

WSM_VIRTUAL_KEYBOARD

Inject or filter input events on keyboard (Soft Deny)

WSM_VIRTUAL_POINTING

Modify the position of the pointer and simulate clicks (Soft Deny)

17 / 47



LibWSM Capabilities 2/3

WSM_FULLSCREEN

Use the entire screen (Soft Allow)

WSM_GLOBAL_KEYBOARD_SEQUENCE [obj: key sequence]

Receive keyboard sequences even when not active (Soft Deny)

WSM_FORWARD_RESERVED_KEYBOARD_SEQUENCE [obj: key sequence]

Receive reserved compositor sequences when active (Soft Deny)

WSM_RAISE_FOCUS

Raise the window and grab focus programmatically (Soft Allow)

18 / 47



LibWSM Capabilities 3/3

WSM_CLIPBOARD_COPY

Copy programmatically to the clipboard (Allow)

WSM_CLIPBOARD_PASTE

Paste from the clipboard (Soft Deny)

! Of course this list is provisional. Please suggest corrections/additions
at https://github.com/mupuf/libwsm/issues.

19 / 47

https://github.com/mupuf/libwsm/issues


The Default Backend

Policy managed with files

• default policy, app-specific policies, policy templates (WIP)
• system-wide policies can be customised by users

A single source of policy per app at any time

• more manageable for packagers and distributions
• better visibility (includes in SELinux are a recipe for trouble)

20 / 47



Example Default Policy

[Wayland Security Entry]
Exec=*
Version=1

[All Compositors]
WSM_FULLSCREEN=soft-allow
WSM_CLIPBOARD_COPY=allow
WSM_RAISE_FOCUS=soft-allow

[Paranoid Shell]
WSM_FULLSCREEN=deny
WSM_CLIPBOARD_COPY=deny

[GNOME]
_GNOME_USE_SHELL_API=basic-access

[Mupuf]
WSM_FULLSCREEN=soft-allow
_WESTON_FULLSCREEN=soft-allow

[Weston]
_WESTON_FULLSCREEN=implicit-deny

21 / 47



Example Policy for an Application

[Wayland Security Entry]
Exec=/usr/bin/example
Version=1

[All Compositors]
WSM_FULLSCREEN=allow
WSM_CLIPBOARD_COPY=deny

[Paranoid Shell]
WSM_FULLSCREEN=deny
WSM_CLIPBOARD_COPY=deny

[GNOME]
_GNOME_USE_SHELL_API=allow

[Mupuf]
WSM_FULLSCREEN=allow
_WESTON_FULLSCREEN=permanent-allow-if-frequent

[Weston]
_WESTON_FULLSCREEN=allow

22 / 47



This is Just a Backbone

We made it as flexible as possible.

Goal: positive user experiences

• Easy to conceptualise and edit policy, easy to add UI
• Soft decisions let DEs build their own UX

Need something more for your shell? Talk to us!

23 / 47



Potential Security Tasks & Interactions

GUIs might be necessary for

• Answering an app’s permission request
• Installing an app which needs privileges
• Knowing what privileges an app has
• Revoking an app’s privileges
• Prevent annoying apps from requesting privileges

• (“why” may influence the design)

This is the job of DEs!

24 / 47



Outline

1 Current Security of the Graphic Stack

2 Introducing Wayland Security Modules

3 Facts and myths about humans and security

4 Security UIs, Infrastructure and Pitfalls to Avoid

5 Conclusion

25 / 47



Introducing my research group...

I’m a PhD student at UCL Info Sec
We specialise in usable and productive security.

I’m investigating how Linux users manage their security!

• We don’t know what makes security software work... yet
• We don’t know how to change home user behaviour... yet
• But we know how to do user research!

Shameless advertising: http://sec.cs.ucl.ac.uk

26 / 47

http://sec.cs.ucl.ac.uk


Some Research Knowledge 1/3

User time is precious, respect it

• Nobody wants to perform security tasks! People rationally reject
costly security advice

• Nobody has time for security! More security pressure decreases
willingness to comply

• Most security warnings discarded in 2s. One reason: people
habituated to warnings, but there could be others

[Beautement et al., 2008, Herley, 2009, Krol et al., 2012, Akhawe and Felt, 2013]

27 / 47



Some Research Knowledge 2/3

Security is desirable

• People in corporate want insecure options hidden by default
• They still bypass or disable security to get stuff done
• And still deploy their own security strategies to compensate

[Bartsch and Sasse, 2013, Kirlappos et al., 2014] + private conversations with Sasse

28 / 47



Some Research Knowledge 3/3

Home users are not very concerned

• Home users think they will never be targeted. Telling them about
opportunistic criminals best triggers concern

• Speak of malware as medical infections, it’s better understood
than other metaphors

• Some people think antivirus software keeps them safe
• Linux users feel Linux is more secure (but it’s not)

[Camp, 2006, Wash, 2010, Krol et al., 2012] + market research and own observations

29 / 47



What Makes Security Work?

Warning: nobody really knows!

Some sanity principles for now:

1 Don’t put the cost of security on users!
• Interaction cost of security
• Initial cost of ‘opt-in’ security
• Lost features→ hinders practices

2 Don’t ask app devs to do the security
3 Complex policy = opaque breakdowns
4 Test with real people as often as possible

30 / 47



Outline

1 Current Security of the Graphic Stack

2 Introducing Wayland Security Modules

3 Facts and myths about humans and security

4 Security UIs, Infrastructure and Pitfalls to Avoid

5 Conclusion

31 / 47



1 Trusted UIs

What, How

• UIs that are controlled by the OS/Compositor (not by apps)
• Trusted path between Trusted UIs and user
• Which means need for a UI embedding protocol

Goal

• Indicate user intent without policy when interacted with
• Trusted File Dialog / Power boxes [Yee, 2004]
• Secure “Take Photo” button on Android [Roesner et al., 2012]

• Some Trusted UIs in Windows 8 and OS X
• Sadly, they require API changes in toolkits...

32 / 47



PoC: File Chooser Dialog
Remediating the Need for Filename Autocompletion

33 / 47



An Initial PoC for GTK+ File Chooser Dialog

• Mirror the “normal” usage of API: almost all apps portable
• Prevent attacks when user interacts w/ GUI
• Expose statefulness and error handling to apps

! Microsoft switched to a full async programming model: no error
handling when permission is denied!

34 / 47



Is it really that simple?

Issues arising with new FCD

• File preview: should move to built-in DE routine
• Custom widgets: needs a UI embedding protocol

would work for apps currently using such widgets

• Autocompletion of file extension when saving?

! Truth is both APIs and widgets need to be redesigned.
More complex workflows need entirely new UIs

35 / 47



Another Example: X11 Selections

An actual security issue

• Apps can paste selection content w/out mediation
• They routinely check if they support the content type of selections

• Apps can paste selection content w/out mediation
• They routinely check if they support the content type of selections
• Opening/Saving groups of related files

• Playlist Opener
• Session Saver/Resumer

• Folder Scanner

! GNOME Competition: Content Selection & Sharing APIs

36 / 47



Is a Secure Clipboard Possible?

Apps should receive clipboard events

• Implication: need a reserved hotkey for pasting
• And Trusted UIs buttons and menu items

• We do need a (two-way) UI embedding protocol

Risk of issues down the road

• What about apps that use other labels/keyboard sequences?
• Share your concerns/critics with us, it will help!

37 / 47



2 Permission Requests

Permission requests don’t provide security.
Systematically ignored: lack of experience,
disruptiveness, immediate gratification bias,
economic rationality / compliance budget

How to ask for Permission [Felt et al., 2012]

38 / 47



Permission Requests (are totally offtopic)

You have 2 seconds per UI! No more!

• Don’t expect rational decisions, rely on interaction cost instead
• Make it useful and actionable
• Identify who is asking for permission
• Visualise what is asked for

[Reeder, 2011 on NEAT warnings, Day, 2014 on sandboxing]

! Good design is DE-dependant. No infrastructure work needed in
Wayland for permission UIs.

39 / 47



3 Authentication UIs

Spoofing Auth UIs is highly rewarding... and easy

• Just fake the polkit UI!
• Or go fullscreen and fake:

• The whole desktop environment
• The greeter/lock screen
• A Web login page

c© Cyberoam

40 / 47



Please Pwn my Authentication UI

41 / 47



Please Pwn my Authentication UI

When users open your rogue app’s settings, display this:

+

42 / 47



Defences

Three (imperfect) approaches

Unspoofability GFX effects only the shell can make
Indirections add a user action to all auth (e.g., Windows UAC)
Mutual Auth make the DE show the user a secret

! All three can be broken with a bit of user inattention/confusion.

43 / 47



Attacking Auth UI Defences

Unspoofable Effects

• e.g., wobbly animation on background windows
• Not trivial to simulate but...
• Will users pay attention to the auth dialog or to the background?

Indirections

• Ctrl+Alt+Del? Bind each key individually and show your fake UI
• Or tell the user an error occurred and pop a new UI

Actual out-of-band communication is necessary!

44 / 47



Example: "Anti-Phishing" Mutual Auth

c© Confident Technologies

! Tell users “The image server is down” and they all proceed!

Lesson: cultural context matters. Errors expected on the Internet

45 / 47



Outline

1 Current Security of the Graphic Stack

2 Introducing Wayland Security Modules

3 Facts and myths about humans and security

4 Security UIs, Infrastructure and Pitfalls to Avoid

5 Conclusion

46 / 47



Thanks for your Attention!

What we have

• A LibWSM prototype to enable privileged interfaces
• Open problems for security UIs design
• More detailled versions on mupuf.org/blog

What comes next

• Martin to finish and maintain LibWSM
• Steve to study Linux users’ security

practices in-the-wild
• All of us to review privileged APIs?

Steve Dodier-Lazaro
s.dodier-lazaro@cs.ucl.ac.uk

Martin Peres
martin.peres@labri.fr

47 / 47

mupuf.org/blog


Akhawe, D. and Felt, A. P. (2013).
Alice in warningland: A large-scale field study of browser security
warning effectiveness.
In Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, pages 257–272, Berkeley, CA, USA. USENIX
Association.

Bartsch, S. and Sasse, M. A. (2013).
How users bypass access control – and why: The impact of
authorization problems on individuals and the organization.
In Proceedings of the 21st European Conference on Information
Systems (ECIS 2013).

Beautement, A., Sasse, M. A., and Wonham, M. (2008).
The compliance budget: managing security behaviour in
organisations.
In Proceedings of the 2008 workshop on New security paradigms,
NSPW ’08, pages 47–58, New York, NY, USA. ACM.

47 / 47



Camp, L. J. (2006).
Mental models of privacy and security.
Available at SSRN 922735.

Felt, A. P., Egelman, S., Finifter, M., Akhawe, D., and Wagner, D.
(2012).
How to ask for permission.
In Proceedings of the 7th USENIX Conference on Hot Topics in
Security, HotSec’12, pages 7–7, Berkeley, CA, USA. USENIX
Association.

Herley, C. (2009).
So long, and no thanks for the externalities: the rational rejection
of security advice by users.
In Proceedings of the 2009 workshop on New security paradigms
workshop, NSPW ’09, pages 133–144, New York, NY, USA. ACM.

Kirlappos, I., Parkin, S., and Sasse, M. (2014).

47 / 47



Learning from “shadow security”: Why understanding
non-compliance provides the basis for effective security.
In Workshop on Usable Security, San Diego, California.

Krol, K., Moroz, M., and Sasse, M. A. (2012).
Don’t work. can’t work? why it’s time to rethink security warnings.
In Risk and Security of Internet and Systems (CRiSIS), 2012 7th
International Conference on, pages 1–8.

Loscocco, P. A., Smalley, S. D., Muckelbauer, P. A., Taylor, R. C.,
Turner, S. J., and Farrell, J. F. (1998).
The inevitability of failure: The flawed assumption of security in
modern computing environments.
In In Proceedings of the 21st National Information Systems
Security Conference, pages 303–314.

Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H. J., and
Cowan, C. (2012).

47 / 47



User-driven access control: Rethinking permission granting in
modern operating systems.
In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, pages 224–238, Washington, DC, USA. IEEE
Computer Society.

Saltzer, J. H. and Schroeder, M. D. (1975).
The Protection of Information in Computer Systems.

Wash, R. (2010).
Folk models of home computer security.
In Proceedings of the Sixth Symposium on Usable Privacy and
Security, SOUPS ’10, pages 11:1–11:16, New York, NY, USA.
ACM.

Yee, K.-P. (2004).
Aligning security and usability.
Security Privacy, IEEE, 2(5):48 –55.

47 / 47


	Current Security of the Graphic Stack
	Introducing Wayland Security Modules
	Facts and myths about humans and security
	Security UIs, Infrastructure and Pitfalls to Avoid
	Conclusion

